NETCONF Working Group K. Watsen Internet-Draft Juniper Networks Intended status: Standards Track G. Wu Expires: January 9, 2017 Cisco Networks July 8, 2016 System Keychain Model draft-ietf-netconf-system-keychain-00 Abstract This document defines a YANG data module for a system-level keychain mechanism, that might be used to hold onto private keys and certificates that are trusted by the system advertising support for this module. Editorial Note (To be removed by RFC Editor) This draft contains many placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document. This document contains references to other drafts in progress, both in the Normative References section, as well as in body text throughout. Please update the following references to reflect their final RFC assignments: o draft-ietf-netconf-restconf o draft-ietf-netconf-call-home o draft-ietf-rtgwg-yang-key-chain Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements: o "VVVV" --> the assigned RFC value for this draft o "XXXX" --> the assigned RFC value for draft-ietf-netconf-restconf o "YYYY" --> the assigned RFC value for draft-ietf-netconf-call-home Artwork in this document contains placeholder values for ports pending IANA assignment from "draft-ietf-netconf-call-home". Please apply the following replacements: Watsen & Wu Expires January 9, 2017 [Page 1] Internet-Draft System Keychain Model July 2016 o "7777" --> the assigned port value for "netconf-ch-ssh" o "8888" --> the assigned port value for "netconf-ch-tls" o "9999" --> the assigned port value for "restconf-ch-tls" Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement: o "2016-07-08" --> the publication date of this draft The following two Appendix sections are to be removed prior to publication: o Appendix A. Change Log o Appendix B. Open Issues Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 9, 2017. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of Watsen & Wu Expires January 9, 2017 [Page 2] Internet-Draft System Keychain Model July 2016 the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 4 2. The System Keychain Model . . . . . . . . . . . . . . . . . . 4 2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. Example Usage . . . . . . . . . . . . . . . . . . . . . . 6 2.3. YANG Module . . . . . . . . . . . . . . . . . . . . . . . 17 3. Design Considerations . . . . . . . . . . . . . . . . . . . . 28 4. Security Considerations . . . . . . . . . . . . . . . . . . . 29 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30 5.1. The IETF XML Registry . . . . . . . . . . . . . . . . . . 30 5.2. The YANG Module Names Registry . . . . . . . . . . . . . 30 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 30 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1. Normative References . . . . . . . . . . . . . . . . . . 30 7.2. Informative References . . . . . . . . . . . . . . . . . 31 Appendix A. Change Log . . . . . . . . . . . . . . . . . . . . . 33 A.1. server-model-09 to 00 . . . . . . . . . . . . . . . . . . 33 Appendix B. Open Issues . . . . . . . . . . . . . . . . . . . . 33 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 33 1. Introduction This document defines a YANG [RFC6020] data module for a system-level keychain mechanism, which can be used to hold onto private keys and certificates that are trusted by the system advertising support for this module. This module provides a centralized location for security sensitive data, so that the data can be then referenced by other modules. There are two types of data that are maintained by this module: o Private keys, and any associated public certificates. o Sets of trusted certificates. This document extends special consideration for systems that have Trusted Protection Modules (TPMs). These systems are unique in that the TPM must be directed to generate new private keys (it is not possible to load a private key into a TPM) and it is not possible to backup/restore the TPM's private keys as configuration. Watsen & Wu Expires January 9, 2017 [Page 3] Internet-Draft System Keychain Model July 2016 It is not required that a system has an operating system level keychain utility to implement this module. 1.1. Terminology The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. 1.2. Tree Diagrams A simplified graphical representation of the data models is used in this document. The meaning of the symbols in these diagrams is as follows: o Brackets "[" and "]" enclose list keys. o Braces "{" and "}" enclose feature names, and indicate that the named feature must be present for the subtree to be present. o Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only). o Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and leaf-list. o Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":"). o Ellipsis ("...") stands for contents of subtrees that are not shown. 2. The System Keychain Model The system keychain module defined in this section provides a configurable object having the following characteristics: o A semi-configurable list of private keys, each with one or more associated certificates. Private keys MUST be either preinstalled (e.g., a key associated to an IDevID [Std-802.1AR-2009] certificate), be generated by request, or be loaded by request. Each private key is MAY have associated certificates, either preinstalled or configured after creation. o A configurable list of lists of trust anchor certificates. This enables the server to have use-case specific trust anchors. For instance, one list of trust anchors might be used to authenticate management connections (e.g., client certificate-based Watsen & Wu Expires January 9, 2017 [Page 4] Internet-Draft System Keychain Model July 2016 authentication for NETCONF or RESTCONF connections), and a different list of trust anchors might be used for when connecting to a specific Internet-based service (e.g., a zero touch bootstrap server). o An RPC to generate a certificate signing request for an existing private key, a passed subject, and an optional attributes. The signed certificate returned from an external certificate authority (CA) can be later set using a standard configuration change request (e.g., ). o An RPC to request the server to generate a new private key using the specified algorithm and key length. o An RPC to request the server to load a new private key. 2.1. Overview The system keychain module has the following tree diagram. Please see Section 1.2 for information on how to interpret this diagram. module: ietf-system-keychain +--rw keychain +--rw private-keys | +--rw private-key* [name] | | +--rw name string | | +--ro algorithm? identityref | | +--ro key-length? uint32 | | +--ro public-key binary | | +--rw certificate-chains | | | +--rw certificate-chain* [name] | | | +--rw name string | | | +--rw certificate* binary | | +---x generate-certificate-signing-request | | +---w input | | | +---w subject binary | | | +---w attributes? binary | | +--ro output | | +--ro certificate-signing-request binary | +---x generate-private-key | | +---w input | | +---w name string | | +---w algorithm identityref | | +---w key-length? uint32 | +---x load-private-key | +---w input | +---w name string | +---w private-key binary Watsen & Wu Expires January 9, 2017 [Page 5] Internet-Draft System Keychain Model July 2016 +--rw trusted-certificates* [name] | +--rw name string | +--rw description? string | +--rw trusted-certificate* [name] | +--rw name string | +--rw certificate? binary +--rw trusted-ssh-host-keys* [name] | +--rw name string | +--rw description? string | +--rw trusted-host-key* [name] | +--rw name string | +--rw host-key binary +--rw user-auth-credentials +--rw user-auth-credential* [username] +--rw username string +--rw auth-method* [priority] +--rw priority uint8 +--rw (auth-type)? +--:(certificate) | +--rw certificate* -> /keychain/private- keys/private-key/certificate-chains/certificate-chain/name +--:(public-key) | +--rw public-key* -> /keychain/private- keys/private-key/name +--:(ciphertext-password) | +--rw ciphertext-password? string +--:(cleartext-password) +--rw cleartext-password? string notifications: +---n certificate-expiration +--ro certificate instance-identifier +--ro expiration-date yang:date-and-time 2.2. Example Usage The following example illustrates the "generate-private-key" action in use with the RESTCONF protocol and JSON encoding. Watsen & Wu Expires January 9, 2017 [Page 6] Internet-Draft System Keychain Model July 2016 REQUEST ------- ['\' line wrapping added for formatting only] POST https://example.com/restconf/data/ietf-system-keychain:keychain/\ private-keys/generate-private-key HTTP/1.1 HOST: example.com Content-Type: application/yang.operation+json { "ietf-system-keychain:input" : { "name" : "ex-key-sect571r1", "algorithm" : "sect571r1" } } RESPONSE -------- HTTP/1.1 204 No Content Date: Mon, 31 Oct 2015 11:01:00 GMT Server: example-server The following example illustrates the "load-private-key" action in use with the RESTCONF protocol and JSON encoding. Watsen & Wu Expires January 9, 2017 [Page 7] Internet-Draft System Keychain Model July 2016 REQUEST ------- ['\' line wrapping added for formatting only] POST https://example.com/restconf/data/ietf-system-keychain:keychain/\ private-keys/load-private-key HTTP/1.1 HOST: example.com Content-Type: application/yang.operation+xml ex-key-sect571r1 NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd\ VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER\ V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF\ Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN\ QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ\ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ\ NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC\ WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM\ lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk\ zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot\ 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2\ WpiMjB2WlhoaGJYQnNaUzVqY215aU9L= RESPONSE -------- HTTP/1.1 204 No Content Date: Mon, 31 Oct 2015 11:01:00 GMT Server: example-server The following example illustrates the "generate-certificate-signing- request" action in use with the NETCONF protocol. REQUEST ------- Watsen & Wu Expires January 9, 2017 [Page 8] Internet-Draft System Keychain Model July 2016 ex-key-sect571r1 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2R manZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNlmO Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmR6Zgo= bwtakWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvut4 arnZvO3NkZmJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYm Z2aXNiZGZpYmhzZG87ZmJvO3NkZ25iO29pLmC6Rhp= RESPONSE -------- LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== Watsen & Wu Expires January 9, 2017 [Page 9] Internet-Draft System Keychain Model July 2016 The following example illustrates what a fully configured keychain object might look like. The private-key shown below is consistent with the generate-private-key and generate-certificate-signing- request examples above. This example also assumes that the resulting CA-signed certificate has been configured back onto the server. Lastly, this example shows that three lists of trusted certificates having been configured. my-rsa-user-key rsa cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm JvO3NkZ25iO29pLmR6Zgo= my-rsa-chain ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== my-ec-user-key secp256r1 mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ Watsen & Wu Expires January 9, 2017 [Page 10] Internet-Draft System Keychain Model July 2016 JvO3NkZ25iO29pLmR6Zgo= my-ec-chain 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== tpm-protected-key sect571r1 cztvaWRoc2RmZ2tqaHNkZmdramRzZnZzZGtmam5idnNvO2RmanZvO3NkZ mJpdmhzZGZpbHVidjtvc2lkZmhidml1bHNkYmZ2aXNiZGZpYmhzZG87Zm JvO3NkZ25iO29pLmR6Zgo= default-idevid-chain diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV Watsen & Wu Expires January 9, 2017 [Page 11] Internet-Draft System Keychain Model July 2016 SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SSUZJQ0FURS0tLS0tCg== my-ldevid-chain 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SWM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNrekNDQWZ5Z 0F3SUJBZ0lKQUpRT2t3bGpNK2pjTUEwR0NTcUdTSWIzRFFFQkJRVU FNRFF4Q3pBSkJnTlYKQkFZVEFsVlRNUkF3RGdZRFZRUUtFd2RsZUd GdGNHeGxNUk13RVFZRFZRUURFd3BEVWt3Z1NYTnpkV1Z5TUI0WApE diR1V4RXpBUkJnTlZCQU1UQ2tOU1RDQkpjM04xWlhJd2daOHdEUVl KS29aSWh2Y04KQVFFQkJRQURnWTBBTUlHSkFvR0JBTXVvZmFPNEV3 El1QWMrQ1RsTkNmc0d6cEw1Um5ydXZsOFRIcUJTdGZQY3N0Zk1KT1 FaNzlnNlNWVldsMldzaHE1bUViCkJNNitGNzdjbTAvU25FcFE0TnV bXBDT2YKQWdNQkFBR2pnYXd3Z2Frd0hRWURWUjBPQkJZRUZKY1o2W Watsen & Wu Expires January 9, 2017 [Page 12] Internet-Draft System Keychain Model July 2016 URiR0lPNDB4ajlPb3JtREdsRUNCVTFNR1FHQTFVZApJd1JkTUZ1QU ZKY1o2WURiR0lPNDB4ajlPb3JtREdsRUNCVTFvVGlrTmpBME1Rc3d mMKTUE0R0ExVWREd0VCL3dRRUF3SUNCREFTQmdOVkhSTUJBZjhFQ0 RBR0FRSC9BZ0VBTUEwR0NTcUdTSWIzRFFFQgpCUVVBQTRHQkFMMmx rWmFGNWcyaGR6MVNhZnZPbnBneHA4eG00SHRhbStadHpLazFlS3Bx TXp4YXJCbFpDSHlLCklVbC9GVzRtV1RQS1VDeEtFTE40NEY2Zmk2d c4d0tSSElkYW1WL0pGTmlQS0VXSTF4K1I1aDZmazcrQzQ1QXg1RWV SWHgzZjdVM2xZTgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== explicitly-trusted-client-certs Specific client authentication certificates that are to be explicitly trusted NETCONF/RESTCONF clients. These are needed for client certificates not signed by our CA. George Jetson QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 RV0JCU2t2MXI2SFNHeUFUVkpwSmYyOWtXbUU0NEo5akJrQmdOVkhTTUVY VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER UxNQWtHQTFVRUJoTUNWVk14RURBT0JnTlZCQW9UQjJWNApZVzF3YkdVeE V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM TQzcjFZSjk0M1FQLzV5eGUKN2QxMkxCV0dxUjUrbEl5N01YL21ka2M4al zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot LS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg== Fred Flintstone VlEVlFRREV3Vm9ZWEJ3ZVRDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQm pRQXdnWWtDCmdZRUE1RzRFSWZsS1p2bDlXTW44eUhyM2hObUFRaUhVUzV Watsen & Wu Expires January 9, 2017 [Page 13] Internet-Draft System Keychain Model July 2016 rRUpPQy9hSFA3eGJXQW1ra054ZStUa2hrZnBsL3UKbVhsTjhSZUd1ODhG NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW xWVE1SQXdEZ1lEVlFRSwpFd2RsZUdGdGNHeGxNUk13RVFZRFZRUURFd3B EVWt3Z1NYTnpkV1Z5TUEwR0NTcUdTSWIzRFFFQkJRVUFBNEdCCkFFc3BK WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot QWtUOCBDRVUUZJ0RUF== deployment-specific-ca-certs Trust anchors used only to authenticate NETCONF/RESTCONF client connections. Since our security policy only allows authentication for clients having a certificate signed by our CA, we only configure its certificate below. ca.example.com WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN WpiMjB2WlhoaGJYQnNaUzVqY215aU9LUTJNRFF4Q3pBSkJnTlZCQVlUQW QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 RJSUJQFRStS0Cg== Watsen & Wu Expires January 9, 2017 [Page 14] Internet-Draft System Keychain Model July 2016 common-ca-certs Trusted certificates to authenticate common HTTPS servers. These certificates are similar to those that might be shipped with a web browser. ex-certificate-authority NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER V6QVJCZ05WQkFNVENrTlNUQ0JKYzNOMVpYS0NDUUNVRHBNSll6UG8zREF Z05WSFI4RVlqQmdNRjZnSXFBZ2hoNW9kSFJ3T2k4dlpYaGgKYlhCc1pTN QmdOVkJBWVRBbFZUTVJBd0RnWURWUVFLRXdkbAplR0Z0Y0d4bE1RNHdEQ MkF6a3hqUDlVQWtHR0dvS1U1eUc1SVR0Wm0vK3B0R2FieXVDMjBRd2kvZ NQmdOVkhSTUJBZjhFCkFqQUFNQTRHQTFVZER3RUIvd1FFQXdJSGdEQnBC WmdsK2gyTTg3QmtGMjhWbW1CdFFVaWc3OEgrRkYyRTFwdSt4ZVRJbVFFM lLQllsdWpOcjFTMnRLR05EMUc2OVJpK2FWNGw2NTdZNCtadVJMZgpRYjk zSFNwSDdwVXBCYnA4dmtNanFtZjJma3RqZHBxeFppUUtTbndWZTF2Zwot 25PZnpZNEhONApXY0pTaUpZK2xtYWs3RTRORUZXZS9RdGp4NUlXZmdvN2 WpiMjB2WlhoaGJYQnNaUzVqY215aU9L= explicitly-trusted-ssh-host-keys Trusted SSH host keys used to authenticate SSH servers. These host keys would be analogous to those stored in a known_hosts file in OpenSSH. corp-fw1 VEJiZ0JTWEdlbUEKMnhpRHVOTVkvVHFLNWd4cFJBZ1ZOYUU0cERZd05ER NGcEk3UE90cnNFVjRwTUNBd0VBQWFPQ0FSSXdnZ0VPCk1CMEdBMVVkRGd WpiMjB2WlhoaGJYQnNaUzVqY215aU9L= admin Watsen & Wu Expires January 9, 2017 [Page 15] Internet-Draft System Keychain Model July 2016 1 my-ec-chain my-rsa-chain 2 my-rsa-user-key tester 1 testing123 ldevid 1 my-ldevid-chain The following example illustrates a "certificate-expiration" notification in XML. ['\' line wrapping added for formatting only] 2016-07-08T00:01:00Z /kc:keychain/kc:private-keys/kc:private-key/kc:certificate-chains\ /kc:certificate-chain/kc:certificate[3] 2016-08-08T14:18:53-05:00 Watsen & Wu Expires January 9, 2017 [Page 16] Internet-Draft System Keychain Model July 2016 2.3. YANG Module This YANG module makes extensive use of data types defined in [RFC5280] and [RFC5958]. file "ietf-system-keychain@2016-07-08.yang" module ietf-system-keychain { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-system-keychain"; prefix "kc"; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } organization "IETF NETCONF (Network Configuration) Working Group"; contact "WG Web: WG List: WG Chair: Mehmet Ersue WG Chair: Mahesh Jethanandani Editor: Kent Watsen "; description "This module defines a keychain to centralize management of security credentials. Copyright (c) 2014 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Watsen & Wu Expires January 9, 2017 [Page 17] Internet-Draft System Keychain Model July 2016 Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC VVVV; see the RFC itself for full legal notices."; revision "2016-07-08" { description "Initial version"; reference "RFC VVVV: NETCONF Server and RESTCONF Server Configuration Models"; } identity key-algorithm { description "Base identity from which all key-algorithms are derived."; } identity rsa { base key-algorithm; description "The RSA algorithm."; reference "RFC3447: Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1."; } identity secp192r1 { base key-algorithm; description "The secp192r1 algorithm."; reference "RFC5480: Elliptic Curve Cryptography Subject Public Key Information."; } identity secp256r1 { base key-algorithm; description "The secp256r1 algorithm."; reference "RFC5480: Elliptic Curve Cryptography Subject Public Key Information."; } identity secp384r1 { Watsen & Wu Expires January 9, 2017 [Page 18] Internet-Draft System Keychain Model July 2016 base key-algorithm; description "The secp384r1 algorithm."; reference "RFC5480: Elliptic Curve Cryptography Subject Public Key Information."; } identity secp521r1 { base key-algorithm; description "The secp521r1 algorithm."; reference "RFC5480: Elliptic Curve Cryptography Subject Public Key Information."; } container keychain { description "A list of private-keys and their associated certificates, as well as lists of trusted certificates for client certificate authentication. RPCs are provided to generate a new private key and to generate a certificate signing requests."; container private-keys { description "A list of private key maintained by the keychain."; list private-key { key name; description "A private key."; leaf name { type string; description "An arbitrary name for the private key."; } leaf algorithm { type identityref { base "key-algorithm"; } config false; description "The algorithm used by the private key."; } leaf key-length { type uint32; config false; description Watsen & Wu Expires January 9, 2017 [Page 19] Internet-Draft System Keychain Model July 2016 "The key-length used by the private key."; } leaf public-key { type binary; config false; mandatory true; description "An OneAsymmetricKey 'publicKey' structure as specified by RFC 5958, Section 2 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5958: Asymmetric Key Packages ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } container certificate-chains { description "Certificate chains associated with this private key. More than one chain per key is enabled to support, for instance, a TPM-protected key that has associated both IDevID and LDevID certificates."; list certificate-chain { key name; description "A certificate chain for this public key."; leaf name { type string; description "An arbitrary name for the certificate chain. The name must be a unique across all private keys, not just within this private key."; } leaf-list certificate { type binary; ordered-by user; description "An X.509 v3 certificate structure as specified by RFC 5280, Section 4 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690. The list of certificates that run from the server certificate towards the trust anchor. The chain MAY include the trust anchor certificate itself."; reference Watsen & Wu Expires January 9, 2017 [Page 20] Internet-Draft System Keychain Model July 2016 "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } } action generate-certificate-signing-request { description "Generates a certificate signing request structure for the associated private key using the passed subject and attribute values. Please review both the Security Considerations and Design Considerations sections in RFC VVVV for more information regarding this action statement."; input { leaf subject { type binary; mandatory true; description "The 'subject' field from the CertificationRequestInfo structure as specified by RFC 2986, Section 4.1 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } leaf attributes { type binary; description "The 'attributes' field from the CertificationRequestInfo structure as specified by RFC 2986, Section 4.1 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Watsen & Wu Expires January 9, 2017 [Page 21] Internet-Draft System Keychain Model July 2016 Version 1.7. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } output { leaf certificate-signing-request { type binary; mandatory true; description "A CertificationRequest structure as specified by RFC 2986, Section 4.1 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } } } action generate-private-key { description "Requests the device to generate a private key using the specified algorithm and key length."; input { leaf name { type string; mandatory true; description "The name this private-key should have when listed in /keychain/private-keys. As such, the passed value must not match any existing 'name' value."; } leaf algorithm { type identityref { base "key-algorithm"; } Watsen & Wu Expires January 9, 2017 [Page 22] Internet-Draft System Keychain Model July 2016 mandatory true; description "The algorithm to be used when generating the key."; } leaf key-length { type uint32; description "For algorithms that need a key length specified when generating the key."; } } } action load-private-key { description "Requests the device to load a private key"; input { leaf name { type string; mandatory true; description "The name this private-key should have when listed in /keychain/private-keys. As such, the passed value must not match any existing 'name' value."; } leaf private-key { type binary; mandatory true; description "An OneAsymmetricKey structure as specified by RFC 5958, Section 2 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690. Note that this is the raw private with no shrouding to protect it. The strength of this private key MUST NOT be greater than the strength of the secure connection over which it is communicated. Devices SHOULD fail this request if ever that happens."; reference "RFC 5958: Asymmetric Key Packages ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } } Watsen & Wu Expires January 9, 2017 [Page 23] Internet-Draft System Keychain Model July 2016 } list trusted-certificates { key name; description "A list of trusted certificates. These certificates can be used by a server to authenticate clients, or by clients to authenticate servers. The certificates may be endpoint specific or for certificate authorities (to authenticate many clients at once. Each list of certificates SHOULD be specific to a purpose, as the list as a whole may be referenced by other modules. For instance, a NETCONF server model might point to a list of certificates to use when authenticating client certificates."; leaf name { type string; description "An arbitrary name for this list of trusted certificates."; } leaf description { type string; description "An arbitrary description for this list of trusted certificates."; } list trusted-certificate { key name; description "A trusted certificate for a specific use. Note, this 'certificate' is a list in order to encode any associated intermediate certificates."; leaf name { type string; description "An arbitrary name for this trusted certificate. Must be unique across all lists of trusted certificates (not just this list) so that a leafref to it from another module can resolve to unique values."; } leaf certificate { // rename to 'data'? type binary; description "An X.509 v3 certificate structure as specified by RFC 5280, Section 4 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate Watsen & Wu Expires January 9, 2017 [Page 24] Internet-Draft System Keychain Model July 2016 and Certificate Revocation List (CRL) Profile. ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } } list trusted-ssh-host-keys { key name; description "A list of trusted host-keys. These host-keys can be used by clients to authenticate SSH servers. The host-keys are endpoint specific. Each list of host-keys SHOULD be specific to a purpose, as the list as a whole may be referenced by other modules. For instance, a NETCONF client model might point to a list of host-keys to use when authenticating servers host-keys."; leaf name { type string; description "An arbitrary name for this list of trusted SSH host keys."; } leaf description { type string; description "An arbitrary description for this list of trusted SSH host keys."; } list trusted-host-key { key name; description "A trusted host key."; leaf name { type string; description "An arbitrary name for this trusted host-key. Must be unique across all lists of trusted host-keys (not just this list) so that a leafref to it from another module can resolve to unique values. Note that, for when the SSH client is able to listen for call-home connections as well, there is no reference identifier (e.g., hostname, IP address, etc.) that it can use to uniquely identify the server with. The call-home draft recommends SSH servers use X.509v3 Watsen & Wu Expires January 9, 2017 [Page 25] Internet-Draft System Keychain Model July 2016 certificates (RFC6187) when calling home."; } leaf host-key { // rename to 'data'? type binary; mandatory true; description "An OneAsymmetricKey 'publicKey' structure as specified by RFC 5958, Section 2 encoded using the ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5958: Asymmetric Key Packages ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)."; } } } /* Are the auth credentials truly limited to SSH? Could they be used by an HTTP client to log into an HTTP server? If truly just for SSH, maybe rename? */ container user-auth-credentials { description "A list of user authentication credentials that can be used by an SSH client to log into an SSH server, using any of the supported authentication methods (e.g., password, public key, client certificate, etc.)."; list user-auth-credential { key username; description "The authentication credentials for a specific user."; leaf username { type string; description "The username of this user. This will be the username used, for instance, to log into an SSH server."; } list auth-method { key priority; description "A method of authenticating as this user."; leaf priority { Watsen & Wu Expires January 9, 2017 [Page 26] Internet-Draft System Keychain Model July 2016 type uint8; description "When multiple authentication methods in this list are supported by the server, the one with the lowest priority value will be the one that is used."; } choice auth-type { description "The authentication type."; leaf-list certificate { type leafref { path "/keychain/private-keys/private-key/" + "certificate-chains/certificate-chain/name"; } ordered-by user; description "A list of references to certificates that can be used for user authentication. When multiple certificates in this list supported by the server, the one that comes before the others in the leaf-list will be used."; } leaf-list public-key { type leafref { path "/keychain/private-keys/private-key/name"; } ordered-by user; description "A list of references to public keys that can be used for user authentication. When multiple public keys in this list supported by the server, the one that comes before the others in the leaf-list will be used."; } leaf ciphertext-password { type string; description "An ciphertext password. The method of encipherment and how that method can be determined from this string is implementation-specific."; } leaf cleartext-password { type string; description "An cleartext password."; } } } } } Watsen & Wu Expires January 9, 2017 [Page 27] Internet-Draft System Keychain Model July 2016 } notification certificate-expiration { description "A notification indicating that a configured certificate is either about to expire or has already expired. When to send notifications is an implementation specific decision, but it is RECOMMENDED that a notification be sent once a month for 3 months, then once a week for four weeks, and then once a day thereafter."; leaf certificate { type instance-identifier; mandatory true; description "Identifies which certificate is expiring or is expired."; } leaf expiration-date { type yang:date-and-time; mandatory true; description "Identifies the expiration date on the certificate."; } } } 3. Design Considerations This document uses PKCS #10 [RFC2986] for the "generate-certificate- signing-request" action. The use of Certificate Request Message Format (CRMF) [RFC4211] was considered, but is was unclear if there was market demand for it, and so support for CRMF has been left out of this specification. If it is desired to support CRMF in the future, placing a "choice" statement in both the input and output statements, along with an "if-feature" statement on the CRMF option, would enable a backwards compatible solution. This document puts a limit of the number of elliptical curves supported by default. This was done to match industry trends in IETF best practice (e.g., matching work being done in TLS 1.3). If additional algorithms are needed, they MAY be augmented in by another module, or added directly in a future version of this document. Both this document and Key Chain YANG Data Model [draft-ietf-rtgwg-yang-key-chain] define keychain YANG modules. The Watsen & Wu Expires January 9, 2017 [Page 28] Internet-Draft System Keychain Model July 2016 authors looked at this and agree that they two modules server different purposes and hence not worth merging into one document. To underscore this further, this document renamed its module from "ietf- keychain" to "ietf-system-keychain" and that other document renamed its module from "ietf-key-chain" to "ietf-routing-key-chain". For the trusted-certificates list, Trust Anchor Format [RFC5914] was evaluated and deemed inappropriate due to this document's need to also support pinning. That is, pinning a client-certificate to support NETCONF over TLS client authentication. 4. Security Considerations This document defines a keychain mechanism that is entrusted with the safe keeping of private keys, and the safe keeping of trusted certificates. Nowhere in this API is there an ability to access (read out) a private key once it is known to the keychain. Further, associated public keys and attributes (e.g., algorithm name, key length, etc.) are read-only. That said, this document allows for the deletion of private keys and their certificates, as well the deletion of trusted certificates. Access control mechanisms (e.g., NACM [RFC6536]) MUST be in place so as to authorize such client actions. Further, whilst the data model allows for private keys and trusted certificates in general to be deleted, implementations should be well aware that some privates keys (e.g., those in a TPM) and some trusted certificates, should never be deleted, regardless if the authorization mechanisms would generally allow for such actions. For the "generate-certificate-signing-request" action, it is RECOMMENDED that devices implement assert channel binding [RFC5056], so as to ensure that the application layer that sent the request is the same as the device authenticated in the secure transport layer was established. This document defines a data model that includes a list of private keys. These private keys MAY be deleted using standard NETCONF or RESTCONF operations (e.g., ). Implementations SHOULD automatically (without explicit request) zeroize these keys in the most secure manner available, so as to prevent the remnants of their persisted storage locations from being analyzed in any meaningful way. The keychain module define within this document defines the "load- private-key" action enabling a device to load a client-supplied private key. This is a private key with no shrouding to protect it. The strength of this private key MUST NOT be greater than the strength of the underlying secure transport connection over which it is communicated. Devices SHOULD fail this request if ever the Watsen & Wu Expires January 9, 2017 [Page 29] Internet-Draft System Keychain Model July 2016 strength of the private key is greater then the strength of the underlying transport. 5. IANA Considerations 5.1. The IETF XML Registry This document registers one URI in the IETF XML registry [RFC2119]. Following the format in [RFC3688], the following registration is requested: URI: urn:ietf:params:xml:ns:yang:ietf-system-keychain Registrant Contact: The NETCONF WG of the IETF. XML: N/A, the requested URI is an XML namespace. 5.2. The YANG Module Names Registry This document registers one YANG module in the YANG Module Names registry [RFC6020]. Following the format in [RFC6020], the the following registration is requested: name: ietf-system-keychain namespace: urn:ietf:params:xml:ns:yang:ietf-system-keychain prefix: kc reference: RFC VVVV 6. Acknowledgements The authors would like to thank for following for lively discussions on list and in the halls (ordered by last name): Andy Bierman, Martin Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch, Juergen Schoenwaelder; Phil Shafer, Sean Turner, and Bert Wijnen. 7. References 7.1. Normative References [draft-ietf-netconf-restconf] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", draft-ieft-netconf-restconf-04 (work in progress), 2014. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . Watsen & Wu Expires January 9, 2017 [Page 30] Internet-Draft System Keychain Model July 2016 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI 10.17487/RFC2986, November 2000, . [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, . [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958, August 2010, . [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . 7.2. Informative References [draft-ietf-rtgwg-yang-key-chain] Lindem, A., Qu, Y., Yeung, D., Chen, I., Zhang, J., and Y. Yang, "Key Chain YANG Data Model", draft-ietf-rtgwg-yang- key-chain (work in progress), 2016, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)", RFC 4211, DOI 10.17487/RFC4211, September 2005, . [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007, . Watsen & Wu Expires January 9, 2017 [Page 31] Internet-Draft System Keychain Model July 2016 [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor Format", RFC 5914, DOI 10.17487/RFC5914, June 2010, . [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration Protocol (NETCONF) Access Control Model", RFC 6536, DOI 10.17487/RFC6536, March 2012, . [Std-802.1AR-2009] IEEE SA-Standards Board, "IEEE Standard for Local and metropolitan area networks - Secure Device Identity", December 2009, . Watsen & Wu Expires January 9, 2017 [Page 32] Internet-Draft System Keychain Model July 2016 Appendix A. Change Log A.1. server-model-09 to 00 o This draft was split out from draft-ietf-netconf-server-model-09. o Removed key-usage parameter from generate-private-key action. o Now /private-keys/private-key/certificates/certificate/name must be globally unique (unique across all private keys). o Added top-level 'trusted-ssh-host-keys' and 'user-auth- credentials' to support SSH client modules. Appendix B. Open Issues Please see: https://github.com/netconf-wg/system-keychain/issues. Authors' Addresses Kent Watsen Juniper Networks EMail: kwatsen@juniper.net Gary Wu Cisco Networks EMail: garywu@cisco.com Watsen & Wu Expires January 9, 2017 [Page 33]